

What do you know / what are you trying to find???

- 1. You know 'x' find 'y'

 Sub in 'x'

 Solve for 'y'
- 2. You know 'y' find 'x'

Sub in'y'
-> Solve for 'x'

OStrandard form > quadratic formula

stactor

- 2 Factored form -> find zeros from
 factors (x-3)(x+4)
 -what makes
 each factor = 0 x=3 x=-4
- 3 Vertex form \longrightarrow solve directly $0=2x^2-4$ $0=2(x-4)^2-16$
- 3. You need to find the vertex
 - 1) Standard -> complete the square
 - ② Factored → use zeros to find cts
 'x' value of vertex, z
 sub in to equation to
 find 'y'
 - 3 Vertex form -> vertex (h.k) y=2(x-4)2-16 h k

18
$$\times$$
30 \times
3

Everything I Need to Know about Quadratics...But Was Afraid to Ask!

Standard Form

	If you want	And you have	Then do this
	Vertex Form $y = a(x-h)^2 + k$	Standard Form $y = ax^2 + bx + c$	 Complete the square or Solve for zeros and use to calculate vertex "a" will be the same
		Factored Form $y = a(x-s)(x-t)$	 expand to standard form then convert to vertex form or solve for zeros and use to calculate vertex "a" will be the same
	Standard Form $y = ax^2 + bx + c$	Vertex Form $y = a(x-h)^2 + k$	> expand
		Factored Form $y = a(x-s)(x-t)$	➤ expand
	Factored Form $y = a(x-s)(x-t)$	Vertex Form $y = a(x - h)^2 + k$	 convert to standard form, then convert to factored form or solve for zeros and substitute into factored form "a" will be the same
		Standard Form $y = ax^2 + bx + c$	 factor, if possible or use quadratic formula to find zeros and substitute into factored form or may not have factored form if there are no real roots
	to graph	Vertex Form $y = a(x - h)^2 + k$	 ▶ read vertex/transformations directly from equation ✓ h is horizontal ✓ k is vertical ✓ a is reflection and stretch/compression for improved accuracy, consider finding y-intercept or applying step pattern.
		Standard Form $y = ax^2 + bx + c$	 solve for x-intercepts and y-intercept solve for vertex and y-intercept
		Factored Form $y = a(x-s)(x-t)$	> read zeros from equation, solve for y-intercept or vertex

If you want	And you have	Then do this
y-intercept	Vertex Form $y = a(x-h)^2 + k$	> set x = 0 and solve for y
	Standard Form $y = ax^2 + bx + c$	<pre>> set x = 0 and solve for y or > c</pre>
	Factored Form $y = a(x-s)(x-t)$	\triangleright set $x = 0$ and solve for y
vertex, max/min, optimal value	Vertex Form $y = a(x-h)^2 + k$	> read the vertex right from the equation: (h,k)
	Standard Form $y = ax^2 + bx + c$	 convert to vertex form or determine the zeros and use s+t/2 to get x-coordinate of vertex (axis of symmetry)
		 > substitute this x to get the y-coordinate or > use x = -b/2a to get x-coordinate of vertex > Substitute this x to get the y-coordinate
	Factored Form $y = a(x-s)(x-t)$	 use the zeros and \$\frac{s+t}{2}\$ to get x-coordinate of vertex (axis of symmetry) substitute this x to get the y-coordinate or convert to standard form then complete the square
	Vertex Form $y = a(x - h)^2 + k$	 convert to standard form then factor or use quadratic formula or set y = 0 then solve for x using inverse operations
x-intercepts, zeros, roots	Standard Form $y = ax^2 + bx + c$	 ▶ factor if possible or ▶ use quadratic formula or ▶ may not have real roots
	Factored Form $y = a(x-s)(x-t)$	> read the zeros right from the equation: s & t
the number of zeros	Vertex Form $y = a(x-h)^2 + k$	analyze location of vertex and opening direction, draw conclusions
	Standard Form $y = ax^2 + bx + c$	> use discriminant: D < 0, D = 0, D > 0
	Factored Form $y = a(x-s)(x-t)$	> zeros are given in this form