What do you know / what are you trying to find??? - 1. You know 'x' find 'y' Sub in 'x' Solve for 'y' - 2. You know 'y' find 'x' Sub in'y' -> Solve for 'x' OStrandard form > quadratic formula stactor - 2 Factored form -> find zeros from factors (x-3)(x+4) -what makes each factor = 0 x=3 x=-4 - 3 Vertex form \longrightarrow solve directly $0=2x^2-4$ $0=2(x-4)^2-16$ - 3. You need to find the vertex - 1) Standard -> complete the square - ② Factored → use zeros to find cts 'x' value of vertex, z sub in to equation to find 'y' - 3 Vertex form -> vertex (h.k) y=2(x-4)2-16 h k 18 $$\times$$ 30 \times 3 ## Everything I Need to Know about Quadratics...But Was Afraid to Ask! ## Standard Form | | If you want | And you have | Then do this | |--|-----------------------------------|-----------------------------------|--| | | Vertex Form $y = a(x-h)^2 + k$ | Standard Form $y = ax^2 + bx + c$ | Complete the square or Solve for zeros and use to calculate vertex "a" will be the same | | | | Factored Form $y = a(x-s)(x-t)$ | expand to standard form then convert to vertex form or solve for zeros and use to calculate vertex "a" will be the same | | | Standard Form $y = ax^2 + bx + c$ | Vertex Form
$y = a(x-h)^2 + k$ | > expand | | | | Factored Form $y = a(x-s)(x-t)$ | ➤ expand | | | Factored Form $y = a(x-s)(x-t)$ | Vertex Form $y = a(x - h)^2 + k$ | convert to standard form, then convert to factored form or solve for zeros and substitute into factored form "a" will be the same | | | | Standard Form $y = ax^2 + bx + c$ | factor, if possible or use quadratic formula to find zeros and substitute into factored form or may not have factored form if there are no real roots | | | to graph | Vertex Form $y = a(x - h)^2 + k$ | ▶ read vertex/transformations directly from equation ✓ h is horizontal ✓ k is vertical ✓ a is reflection and stretch/compression for improved accuracy, consider finding y-intercept or applying step pattern. | | | | Standard Form $y = ax^2 + bx + c$ | solve for x-intercepts and y-intercept solve for vertex and y-intercept | | | | Factored Form $y = a(x-s)(x-t)$ | > read zeros from equation, solve for y-intercept or vertex | | If you want | And you have | Then do this | |-----------------------------------|-----------------------------------|---| | y-intercept | Vertex Form
$y = a(x-h)^2 + k$ | > set x = 0 and solve for y | | | Standard Form $y = ax^2 + bx + c$ | <pre>> set x = 0 and solve for y or > c</pre> | | | Factored Form $y = a(x-s)(x-t)$ | \triangleright set $x = 0$ and solve for y | | vertex, max/min,
optimal value | Vertex Form
$y = a(x-h)^2 + k$ | > read the vertex right from the equation: (h,k) | | | Standard Form $y = ax^2 + bx + c$ | convert to vertex form or determine the zeros and use s+t/2 to get x-coordinate of vertex (axis of symmetry) | | | | > substitute this x to get the y-coordinate or > use x = -b/2a to get x-coordinate of vertex > Substitute this x to get the y-coordinate | | | Factored Form $y = a(x-s)(x-t)$ | use the zeros and \$\frac{s+t}{2}\$ to get x-coordinate of vertex (axis of symmetry) substitute this x to get the y-coordinate or convert to standard form then complete the square | | | Vertex Form $y = a(x - h)^2 + k$ | convert to standard form then factor or use quadratic formula or set y = 0 then solve for x using inverse operations | | x-intercepts, zeros,
roots | Standard Form $y = ax^2 + bx + c$ | ▶ factor if possible or ▶ use quadratic formula or ▶ may not have real roots | | | Factored Form $y = a(x-s)(x-t)$ | > read the zeros right from the equation: s & t | | the number of zeros | Vertex Form $y = a(x-h)^2 + k$ | analyze location of vertex and opening direction,
draw conclusions | | | Standard Form $y = ax^2 + bx + c$ | > use discriminant: D < 0, D = 0, D > 0 | | | Factored Form $y = a(x-s)(x-t)$ | > zeros are given in this form |