1.5A Factoring

To factor is to write an algebraic expression as a product of two or more other algebraic expressions .

Why factor? To arrive at equivalent expressions which are presented in

- simpler terms which allows us to: Solve equations

 - Graph relations

In grade 10 you learned how to: • Common Factor

- Factor by Grouping
- Factor Simple Trinomials
- Factor Complex Trinomials
- Factor a Difference of Squares
- Factor a Perfect Square Trinomial

Common Factoring

Always your first and last step.

2 or more terms

- Take out the greatest common factor.
- Divide the expression by the GCF to find the other factor.

a)
$$2mn - 4mnt$$

b)
$$6t^5 - 9t^2$$

c)
$$3x^4 - 6x^3 + 9x$$

d)
$$4x(a-b)-3(a-b)$$

Factor by Grouping

An even # of terms: 4, 6, 8, etc...

- Group terms to form pairs.
- Factor the pairs by finding common factors.
- Factor out the shared common binomial factor.

a)
$$3x(m-5)+2(5-m)$$

The terms m - 5 and 5 - m are opposites. This means that one divided by the other is -1.

b)
$$x(y-2)-4(2-y)$$

c)
$$mx + 2y + my + 2x$$

d)
$$22vx - 6vy + 11wx - 3wy$$

e)
$$y^2 + 1 - y^3 - y$$

f)
$$16x^5 + 8x^4 - 6x^3 - 3x^2 + 4x + 2$$

Simple Trinomials

3 terms $ax^2 + bx + c \text{ where } a = 1$

 $(x + n_1)(x + n_2)$

M = ac A = b $N = n_{1}, n_{2}$

a)
$$x^2 - 9x + 14$$

b)
$$5x^2 + 15x - 140$$

c)
$$a^2 + 8ab + 15b^2$$

d)
$$x^4 + 2x^2b - 24b^2$$

Difference of Squares

2 terms

2 perfect squares separated by a subtraction: a^2-b^2

a)
$$49x^2 - 16y^2$$

c)
$$a^2 - \frac{1}{9}$$

e)
$$(3x-2)^2 - (5x+1)^2$$

HOW?

$$a^2-b^2 = (a-b)(a+b)$$
conjugates

b)
$$3x^2 - 12$$

Complex Trinomials

3 terms $ax^2 + bx + c \text{ where } a \neq 1$

a)
$$10x^2 - 11x - 6$$

a)
$$10x^2 - 11x - 6$$

c)
$$18a^2b + 3ab - 6b$$

e)
$$2x^2 - 3x - 5$$

 $(a_1x + f_1)(a_2x + f_2)$

M = ac A = b $N = n_1, n_2$

1. Use a, n₁ and n₂ to find the factors.

$$\frac{a}{n_1}, \frac{a}{n_2}$$

 $\frac{a_1}{f}, \frac{a_2}{f}$

2. Reduce.

OR

Decompose the middle term using n_1 , n_2 and factor by grouping.

b)
$$14x^2 + 31xy - 10y^2$$

d)
$$3x^4 - 25x^2 - 18$$

Perfect Square Trinomials

3 terms $ax^2 + bx + c$

a)
$$m^2 + 10m + 25$$

b)
$$2x^2 - 24x + 72$$

$$(\sqrt{a}x \pm \sqrt{c})^2$$
 same sign as b

c)
$$16a^2 + 24a + 9$$

d)
$$x^4 - 8x^2 + 16$$

Factoring Flowchart

