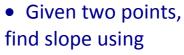
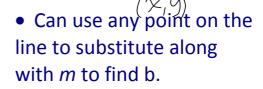
## 2.1 Midpoint and Review of y = mx + b

Remember...


To write the equation of a line you need slope and y-intercept



∆= change


• Perpendicular lines have slopes that are negative reciprocals.

$$M = \frac{1}{2} M = -\frac{2}{1}$$



$$\overrightarrow{m} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

• Same x-int means find the x-int by substituting y = 0, then use this point, (x,0), as a point on the line.



#### 1. Find the equations of the following lines:

$$y=mx+b$$

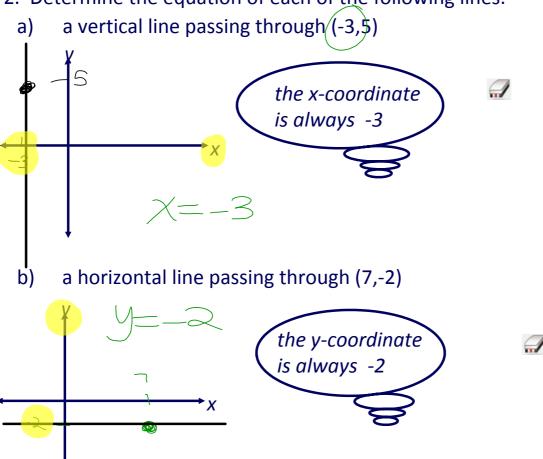
a) passes through (4,2) with a slope of 3

$$\frac{m}{m=3}$$
Need a point (4,2)
$$y=3x+b$$

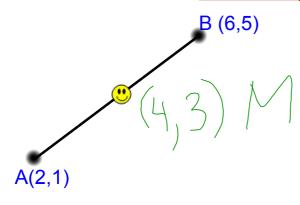
$$2=3(4)+b$$

$$2=12+b$$

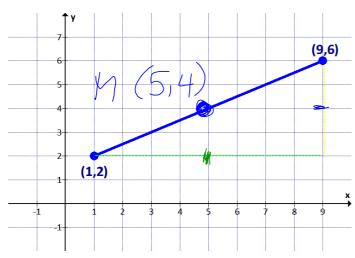
$$2-12=b$$


$$-10=b$$

b) passes through C(3,-4) and D(-1,7)


c) perpendicular to 4x + 3y - 7 = 0 with the same x-intercept as

### **SPECIAL CASES: Horizontal & Vertical Lines**


2. Determine the equation of each of the following lines.



# **The Midpoint**







How can you determine the midpoint algebraically given the coordinates of the endpoint?

$$\chi_{M} = 1+9$$

$$= 5$$

$$y_{M} = \frac{2+6}{2}$$
$$= 4$$

$$(x_1,y_1)$$

$$(x_2,y_2)$$

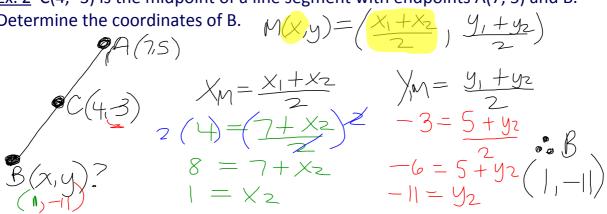
$$(x_2,y_2)$$

The coordinates of the midpoint of a line segment are the means of the endpoint coordinates.

$$M_{AB} = \left(\frac{X_1 + X_2}{2}, \frac{y_1 + y_2}{2}\right)$$

### Ex. 1 Find the midpoint of the line segment AB where A(2,-4) and B(-3,5).

$$M_{AB} = \left(\frac{X_1 + X_2}{2}, \frac{y_1 + y_2}{2}\right)$$

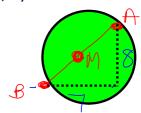

$$= \left(\frac{2 + (-3)}{2}, \frac{-4 + 5}{2}\right)$$

$$= \left(-\frac{1}{2}, \frac{1}{2}\right)$$



Ex. 2 C(4, -3) is the midpoint of a line segment with endpoints A(7, 5) and B.

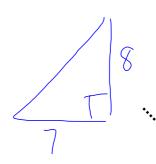





### a) Find the centre of the circle.

$$M_{AB} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$= \left(\frac{4 + (-3)}{2}, \frac{(-3) + 5}{2}\right)$$


$$= \left(\frac{1}{2}\right)$$
i. Center of circle
$$= \left(\frac{1}{2}\right)$$
i.  $\left(\frac{1}{2}\right)$ 



Center of circle 
$$5\left(\frac{1}{2},1\right)$$

### b) Determine the diameter of the circle.

$$\frac{y_2 - y_1}{5 - (-3)}$$





$$a^{2}+b^{2}=C^{2}$$
 $(7)^{2}+8^{2}=C^{2}$ 
 $49+64=C^{2}$ 
 $113=C^{2}$ 
 $\pm\sqrt{13}=C$ 
 $10.6=C, C>0$