Unit 2.6B -Mid Unit Analytic Geometry Review MPM 2D

1. Given a line segment with coordinates $A(-2,6)$ and $B(3,-4)$. Determine:
a. The midpoint of $A B$
b. The slope of $A B$
c. The length of line segment $A B$
d. The equation of a line perpendicular to line segment $A B$ that passes through $(5,2)$
e. The shortest distance from the point $(5,2)$ to line segment $A B$
2. The diameter of a circle has endpoints $X(-9,12)$ and $Y(9,-12)$. Determine:
a. The length of the radius of the circle
b. The coordinates of the centre of the circle (show algebraically)
c. The equation of the circle
d. The y-intercept(s)
e. Is the point $(10,11)$ inside, outside, or on the circle? (show explanation)
f. A possible location for the centre of a different circle if it has the same radius and also has the point $Y(9,-12)$ lying on this circle.
3. A triangle has vertices $K(2,5), L(4,-1)$, and $M(-2,-5)$. Determine:
a. Equation of the median from M
b. Equation for the perpendicular bisector of KL
c. Equation of the altitude from M
4. A theme park is going to be built near two highways. On a coordinate grid, with a scale of 1 unit representing 1 km , the park is located at $\mathrm{P}(3,4)$. Highway 416 is represented by the equation $y=2 x+5$, and Highway 401 is represented by the equation $y=-\frac{1}{2} x+2$. Highway exits must be built from each highway to provide the closest access to the theme park. Determine the distance between these two exits.

TextBook:

p. 154 \# 1, 2
p. 100\# 1-5, 8, 12, 13 ,14ac, 15c, 16a, 18
p 104 \# 1,2, 6,7,9,10

Answers:

1. a) $M_{A B}=\left(\frac{1}{2}, 1\right)$
b) $m_{A B}=-2$
c) $\sqrt{125}$ units
d) $y=\frac{1}{2} x-\frac{1}{2}$
e) $\sqrt{20}$ units
2. a) 15 units
b) $(0,0)$
c) $x^{2}+y^{2}=225$
d) ± 15
e) inside
f) eg. $(18,-24)$ or $(18,0)$ or $(0,-24)$
3. a) $y=\frac{7}{5} x-\frac{11}{5}$
b) $y=\frac{1}{3} x+1$
c) $y=\frac{1}{3} x-\frac{13}{3}$
4. $\quad 4.43$ km
