Lesson 4.2A: Special Angles and the Unit Circle

Consider the following triangles.

Determine the measure of all of the sides and the angles.

These are the **Special Triangles**:

45^0 (Right Isosceles Triangle)	$30^{0},60^{0}$ (Half an Equilater	
$\sin 45^{0} =$	$\sin 30^0 =$	$\sin 60^0 =$
$\cos 45^0 =$	$\cos 30^0 =$	$\cos 60^{\circ} =$
$\tan 45^0 =$	$\tan 30^0 =$	$\tan 60^{0} =$

The Unit Circle: The unit circle is a way to "standardize" the ratios of the special angles onto one diagram.

The original special triangles:

Now, make the hypotenuse 1:

Note: These are similar triangles to the original triangles.

Consider these triangles on a circle with radius of 1 (the terminal arm is 1 unit long).

- Label the lengths of the sides.
- What are the coordinates of point P?
- What are the values of the primary trig ratios?

What can you conclude?

The coordinates are (c

In general:

$$\cos \theta = \frac{x}{1}$$
 $\sin \theta = \frac{y}{1}$ $\tan \theta = \frac{y}{x}$

$$\sin\theta = \frac{y}{1}$$

$$\tan \theta = \frac{y}{x}$$

Creating the Unit Circle

Think about the following...

- What happens to the y values as you rotate?
- What happens to the x values as you rotate?
- Connect the CAST rule to your knowledge of reflecting in the x-axis or y-axis.

The unit circle allows us to understand the values of trig ratios for <u>axis angles</u>.

Terminal arm lies on the x-axis or y-axis

	0°	90°	180°	270°	360°
sin θ					
cos θ					
tan θ					

Ex. 1 Determine the <u>exact</u> values.

a) $\cos 60^{\circ}$

- **b)** $\sin 45^{\circ}$
- c) $\tan 30^{0}$

d) $\sin 240^{\circ}$

- **e)** tan135⁰
- f) $\sin 150^{\circ}$
- g) $\tan(-300^{\circ})$

.

Ex. 2 Determine <u>all</u> possible values for $0 < \theta < 360^{\circ}$.

a)
$$\sin \theta = \frac{1}{\sqrt{2}}$$

b)
$$\tan \theta = -\frac{1}{\sqrt{3}}$$

c)
$$\sin \theta = \frac{-\sqrt{3}}{2}$$

d)
$$\sin \theta = -1$$

e)
$$\tan \theta = undefined$$

Ex 3: Evaluate the following using exact values.

$$\sin 30^{\circ} \cos^{2} \left(225^{\circ}\right) - \tan \left(-60^{\circ}\right)$$