7.3 Amount of an Annuity

Annuity: A <u>series</u> of <u>equal</u> payments made at <u>regular</u> intervals (savings plan, paying off a debt, etc.)

Last June 30, Nigel decided to save for a trip when he graduates. Starting next June 30, and for each of the following 3 years, he plans to deposit \$700 into an account that pays 4.5%/a, compounded annually. How much money will Nigel have accumulated when he makes the last deposit into this annuity?

- How much is each deposit worth at the end of the 4 years?
- What type of <u>series</u> is the <u>sum</u> of the deposits?
- What is the formula to find the sum of the terms?

$$A = \frac{R[(1+i)^n - 1]}{i}$$

Use this to find the amount.

$$R = \frac{At}{\left[(1+i)^n - 1 \right]}$$

- Use this to find the regular payment.
- where
- A = Amount at the time of the last payment
- R = Regular payment
- i = Interest rate per compound pd.
- n = # of compound periods/# of payments

Ex. 1 Mary deposits \$250 into an account at the end of each month paying 7.2%/a compounded monthly for 5 years. How much money will she have at the end of 5 years?

By Hand:

By TVM:

, 1: Finance..., ENTER, 1: TVM Solver... ENTER

Ν = # of compounding periods TAKE NOTE: In annuities N = number of 1% = interest rate/a as a percent compounding periods <u>not</u> years. = present value (P) PMT = the payment amount (put as "0" if there are no payments) FV = future value (A) = number of payments per year (put as "1" if there are no payments) P/Y = number of compound periods per year C/Y PMT: = choose END

N=
I%=
PV=
PMT=
FV=
P/Y=
C/Y=
PMT: END BEGIN

Ex. 2 Cameron wants to be an astronaut and needs to save for university. He plans on making regular bi-weekly deposits into an account paying 5.3%/a compounded bi-weekly. If he wants to have \$9000 in 3 years, how much does he need to deposit each time?

By Hand

By TVM

N= I%= PV= PMT= FV= P/Y= C/Y= PMT: END BEGIN

Ex. 3 Who wants to be a Millionaire?

You want to know how much to put away every month, from now until you retire, to become a millionaire. Assume interest at 5% compounded monthly, and that you retire at 65.

N= I%=

PV=

PMT=

FV=

P/Y=

C/Y=

PMT: END BEGIN

