
7.4 Present Value of an Annuity

Present Value of an Annuity: The amount of money (principal) that must be invested/borrowed NOW to provide a given series of equal payments at equal intervals of time.

Recall: $PV = A(1+i)^{-n}$

Ex. 1 Next year, Jane is going back to university for a Ph.D. in psychology. She wants to know how much money to deposit now into an account that pays 6%/a, compounded annually, to provide a \$5000 payment each year for 4 years, with the first payment due a year from now.

• What is the value of each deposit at the time of the deposit? 4716.98 + 4449.98 + 4198.09 + 3940.47 = \$17325.52

Present Value of an Annuity Formula:

$$PV = R\left[\frac{1 - (1 + i)^{-n}}{i}\right]$$

• Use this to find the present value.

$$R = \frac{PVi}{\left[1 - \left(1 + i\right)^{-n}\right]}$$

• Use this to find the regular payment.

where

PV = Present Value

R = Regular payment (made at the end of the compounding period)

i = interest rate per compound pd.

n = # of compound periods/# of payments (must

be equal to use formula)

Ex. 1 James wants to invest now so that he will receive \$700 every month for 5 years. How much should he invest now at 4.3%/a compounded monthly to achieve this? V = ?

By Hand PV = ? R = 700 i = 0.043 12 $N = 5 \times 12$ = 60 $PV = R \left[1 - (1 + i) - N \right]$ $= 700 \left[1 - (1 + 0.043) - 60 \right]$ $\left(\frac{0.043}{12} \right)$

By TVM

```
N= 60

1%=43

PV=?

PMT=700

FV= 0

P/Y= 12

C/Y= 12

PMT: END BEGIN

PV= $37 731.35

Therest?

James gets

$700 x 60
```

=42000

 \Rightarrow Interest = 42000-37731.35

=\$4268.65

Ex. 2 Charlie has won the lottery prize of a lump sum payment of \$78 000. He has placed the money into an account at 6.3%/a compounded semi- annually and plans to withdraw an equal payment every 6 months for 10 years. How big will the payment be?

By Hand

$$PV = 78000$$

$$R = ?$$

$$i = 0.063$$

$$n = 10 \times 2$$

$$= 20$$

$$R = PV \cdot i$$

$$[1 - (1 + i)^{-1}]$$

$$= 78000 (0.063)$$

$$[1 - (1 + 0.063)^{-20}]$$

By TVM

Ex 3. You win Cash For Life!!!!

\$1000 a week (for 25 years) $\stackrel{>}{=}$ | 1000 x25 x 52 = | 300 000

How much does the lottery need to pay us off???

$$PV = ?$$
 $R = 1000$
 $I = 5$
 $N = 25 \times 52$
 $= 1300$
 $PV = 52$
 $PV = 52$

Homework
Pg. 461
#C2,3bc,
4,6-9,11,12,14
(Graphing Calculator
4,6,9)