Today - Distributive Property

Wednesday - Finish Distributive Property

- Start Unit 1 Review

Thursday - Practice Test

Friday -

Monday - Unit 1 Review

Tuesday March 2 - UNIT 1 TEST

1. Colin added a monomial, a binomial and a trinomial. The result was a binomial. What could the three polynomials he added together be?

2. Determine the missing numbers to make the following true:

$$(3x^2) + 5x - 7 + (4x^2) + (-3x) + (-2) = 7x^2 + 2x - 9$$

- 2. Answer the following TRUE or FALSE
- Q1 If two binomials have two like terms, their sum will be a binomial. T/F
- Q2 A monomial added to a binomial will produce a polynomial with at least 2 terms.

 T/F

Q3 The rules for adding integers apply to adding like terms. T/F

- Q4 Adding polynomials is just like simplifying polynomials. T/F
- Q5 Algebra tiles can always help with polynomial addition. T/F
- Q6 To add polynomials, group the like terms then add their coefficients. T/F

1.11 Distributive Property

Summary of the **Distributive Law**

When you apply the distributive property, you are expanding an expression.

Ex. 1: Simplify = expand = get rid of brackets

a)
$$5(4x - 1)$$

= $20x - 5$

b)
$$-3(2x - 7)$$

= $-6x + 2$

Using an area model..

$$\begin{array}{c|cccc}
4x & -1 \\
5 & 20x & -5
\end{array}$$

$$\begin{array}{c|cccc}
2x & -7 \\
-3 & -6x & +21
\end{array}$$

$$A = -6$$

Remember: Use product rule for exponents if multiplying same bases (ADD THE EXPONENTS)

$$(a^m)(a^n) = a^{m+n}$$

e)
$$8m(2m + 5m^2)$$

= $16m^2 + 40m^3$

e)
$$8m(2m + 5m^2)$$

= $16m^2 + 40m^3$
f) $4x(1 - 2x) - 7x(3x - 4)$
= $4x - 8x^2 - 21x^2 + 28x$
= $-29x^2 + 32x$

REDMAS

g)
$$5[x + 3(x + 2)]$$

= $5[x + 3x + 6]$
= $5(4x + 6)$
= $20x + 30$

g)
$$5[x + 3(x + 2)]$$

= $5[x + 3x + 6]$
= $5(4x + 6)$
= $20x + 30$
h) $-4[5(m - 3) - m]$
= $-4[5m - 15 - m]$
= $-4[4m - 15]$
= $-16m + 60$