2.6 Equation of a Circle

Define circle...

- The line segment PO is the radius of the circle.
- The circle would : have a radius of 5 units.
- All points on the circle would be 5 units away from (0,0).

$$a^{2} + b^{2} = c^{2}$$
 $3^{2} + 4^{2} = c^{2}$
 $9 + 16 = c^{2}$
 $25 = c^{2}$
 $5 = c$

Consider the general point P(x, y) on the circle whose centre is at the origin (0,0) and whose radius is 5...

- any point on the circle creates a right angled triangle
- hypotenuse = 5
- side length = x
- side length = y

Use the <u>Pythagorean Theorem</u> to write an equation for this circle:

$$a^{2} + b^{2} = c^{2}$$

$$\chi^{2} + y^{2} = 5^{2}$$
Equation $\chi^{2} + y^{2} = 25$

In general, the equation of a circle with centre (0,0) and radius, r, is given by

$$x^2 + y^2 = r^2$$

Ex. 1: Complete the table. Aways (0,0) gr 10 math

equation	centre	radius	sketch	x-int, y-int
$x^2 + y^2 = \underbrace{49}_{r^2}$	(0,0)	$r^{2} = 49$ $r = \sqrt{49}$ $r = 7$	7	x=±7 y=±7
$\chi^2 + y^2 = 36$	(0, 0)	6	9	±6 = ±6 = ±6
$\chi^2 + y^2 = 81$	(0,0)	9	9 9	$x = \pm 9$ $y = \pm 9$
$x^2 + y^2 = 13$	(0,0)	r = 13	W3	$x = \pm \sqrt{13}$ $y = \pm \sqrt{13}$
$x^{2} + y^{2} = r^{2}$ $x^{2} + y^{2} = (\sqrt{7})^{2}$ $x^{2} + y^{2} = 7$	(0, 0)	$\sqrt{7}$		x=+5 y=+5
$\chi^2 + y^2 = 17$	(0,0)	V17	$ \begin{array}{c c} & \sqrt{17} \\ & -\sqrt{17} \\ & -\sqrt{17} \end{array} $	x=±117 y=±117
x2+y2=9	(0, 0)	3	3	±3

Ex. 2 Consider the circle $x^2 + y^2 = 169$. How could you tell if a given point

P(x,y) is:

- on the circle a.
- b. inside the circle
- outside the circle?

- If $\Re + \Im = 169$, then the point is on the circle. (The point satisfies the equation).
- b. If $x^2 + y^2 < 169$, then the point is inside the circle. (x_1) (The length of line segment PO is shorter than the radius).
- c. If $x^2 + y^2 > 169$, then the point is outside the circle. (The length of line segment PO is longer than the radius).
- Ex. 3: Determine whether the following points are on, inside, or outside the circle defined by the equation $x^2 + y^2 = 169$.

a. (-5,12)
$$x^2 + y^2$$
 $x^2 + y^2 = 169$
= $(-5)^2 + (12)^2$ o point falls
= $25 + 144$ on the circle

$$\chi^2 + y^2 = 169$$

• Point falls

ON the circle

b. (11,-4)
$$\chi^2 + y^2$$

= $(11)^2 + (-4)^2$
= $121 + 16$
= 137

c. (10,11)
$$x^2 + y^2 = |0^2 + 1|^2 = |00 + 12|$$
= 22|

or $x^2 + y^2 > |69|$
or point falls
outside circle

Note: Chord of a circle is a line segment joining 2 points on the circle.

more than one answer

Pg. 96 #1ce,2bc,4d, 6,7,8,11bcd,15

Try one or two Shortest distance Q'S. C HRIS MARRIEL -

NO. I'M FOLLOWING YOU

Note: Chord of a circle is a line segment joining 2 points on the circle.

