6.1 Properties of Congruent and Similar Triangles

Congruent Triangles

- identical triangles
- all corresponding angles and all corresponding sides are equal
- same shape and size Congruent
- the expression $\triangle ABC \cong \triangle FED$ means that $\triangle ABC$ is congruent to $\triangle FED$

The order of the letters shows correspondence: A F, B E, C D

Ex.1 Using the triangles shown: State the congruent triangles and the 6 known equalities.

F
$$\Delta A = \Delta F$$
 AB=FE * order is $\Delta B = \Delta E$ AC=FD * important! BC=ED

Conditions for Congruency (3 Theorems)

There are three methods to prove triangles are congruent:

- 1. SSS --> All sides are equal.
- 2. SAS --> 2 sides and a CONTAINED angle are equal.
- 3. ASA --> 2 angles and a side are equal.

Ex.2 Prove that the triangles are congruent and name the authority used.

b)
$$A = 40$$

$$A = 4G$$

$$A = 4G$$

$$ASA$$

$$SAS$$

$$AT = 4G$$

$$AT = 0G$$

$$ACAT \cong ADOG, (ASA)$$

SIMILAR TRIANGLES

- have the same shape BUT a different size
- one triangle is an enlargement/reduction of the other

- the corresponding sides are proportional
- the corresponding angles are equal
- the expression <u>AABC ADEF</u> means the triangles are similar (order matters, A-D, B-E, and C-F)
- Given similar \triangle ABC and \triangle DEF, state the similarity, the known Ex. 3 equalities (angles) and the known proportions (sides).

$$A = AC$$

$$AB = AF$$

$$AC = AE$$

$$4B = 4F$$

$$4B = 4F$$

$$4C = 4E$$

$$4D$$

$$AB = 4F$$

$$4C = 4E$$

$$ABC \wedge \Delta EFD$$

Conditions for Similarity (3 Theorems)

There are 3 methods to *prove* that triangles are similar:

- 1. SSS --> If 3 pairs of corresponding sides are proportional then the triangles are similar.
- 2. SAS --> If 2 pairs of corresponding sides are proportional AND the contained angles are equal then the triangles are similar.
- 3. AA --> If two pairs of corresponding angles are equal then the triangles are similar.

Y MP=13×1.5)
MP = 19.5
Scale factor
~

$$\frac{4.5}{3} = 1.5$$

$$= 1.5$$

$$Scale factor$$

$$\frac{\Delta MEP \wedge \Delta JRS}{\Delta MEP \wedge \Delta JRS} = \frac{EP}{RS} = \frac{MP}{JS}$$

$$\frac{ME}{JR} = \frac{EP}{RS} = \frac{MP}{JS}$$

$$\frac{9}{6} = \frac{y}{18}$$

SAS

$$\frac{\Delta A = \Delta D (PLT-Z)}{\Delta E = \Delta C (PLT-Z)}$$

$$\frac{EB}{CB} = \frac{AE}{DC} = \frac{AB}{DB}$$

$$\frac{6}{3} = \frac{x}{2} = \frac{5}{y}$$

$$\frac{6}{3} = \frac{x}{2}$$
 $\frac{6}{3} = \frac{5}{9}$
 $x = 4$ $y = 2.5$

555 AA 5A5

D.333 #C2,C4,4-9,14,15

Quadratics -> Forms

- Standard $y = ax^2 + bx + C$
- Vertex $y = a(x-h)^2 + k$
 - · Factored y=a(x-r)(x-s)

Graphing (-> tables of values)

- -> vertex form -> vertex, over 1 up 1

 Over 2 up 4
- -> factored form -> zeros
 -> vertex

* 5 points