7.6 Future Value of an Ordinary Annuity

Define:
\Rightarrow Annuity: - a series of equal deposits or payments made at regular intervals.
\Rightarrow Simple Annuity: - is an annuity in which the payments coincide with the compounding period.
\Rightarrow Ordinary annuity: - is an annuity in which the payments are made at the end of each interval.

Solve an Annuity Problem:

Method 1: Use a time line diagram

Kira deposits $\$ 100$ at the end of each month into a savings account that earns 3\%/a compounded monthly. What will her savings be at the end of 1 year?

Time (in months)

Total

Method 2: Use a Formula

Kira deposits $\$ 100$ at the end of each month into a savings account that earns 3\%/a compounded monthly. What will her savings be at the end of 1 year?

$$
A=\frac{R\left[(1+i)^{n}-1\right]}{i}
$$

where A is the future Amount in \$
R is the regular deposit
i is interest rate per period
n is total the number of deposits

Method 3: Use a Graphing Calculator

Kira deposits $\$ 100$ at the end of each month into a savings account that earns $3 \% /$ a compounded monthly. What will her savings be at the end of 1 year?

Step 1: Press \because and set the number of decimal places to 2 :

Step 2: Press APPS 11
to open the TVM Solver:

Step 3: Enter the values of the variables as shown.
What the variables represent:
N (Number of Payments)
I\% (Annual Interest Rate)
PV (Present Value)
PMT (Payment)
FV (Future Value)
P/Y (Number of Payments/Year)
C/Y (Number of Compounding
Periods/Year)
PMT: END BEGIN (Payments at End of Payment Interval)

because money is being paid out.
$\mathrm{FV}=0.00$ because that is the
variable to be solved for.
Step 4: Cursor to $\mathrm{FV}=\mathbf{0 . 0 0}$, and then, press $1 \angle F+\operatorname{AR})$ to solve for FV:
$\mathrm{N}=$
$\mathrm{P}=$
$\mathrm{PM}=$
$\mathrm{PM}=$
$\mathrm{FV}=$
$\mathrm{C}=$
$\mathrm{C}=$
PMT:END BEGIN

