7.7 Present Value of an Ordinary Annuity

How much do you need to invest NOW to make regular payments....

Solve a PV Annuity Problem:

Method 1: Use a time line diagram

Holly must begin to repay her student loan. Her monthly payments of $\$ 200$ will be withdrawn at the end of each month from an account earning 6% interest compounded monthly.
How much must she deposit in the account today so that loan payments can be made for one year?

Time (in months)

Method 2: Use a Formula

Holly must begin to repay her student loan. Her monthly payments of $\$ 200$ will be withdrawn at the end of each month from an account earning 6\% interest compounded monthly. How much must she deposit in the account today so that loan payments can be made for one year?
where PV is the present value in \$

$$
P V=\frac{R\left[1-(1+i)^{-n}\right]}{i}
$$

R is the regular payment
i is interest rate per period
n is total the number of deposits

Method 3: Use a Graphing Calculator

Holly must begin to repay her student loan. Her monthly payments of $\$ 200$ will be withdrawn at the end of each month from an account earning 6% interest compounded monthly.
How much must she deposit in the account today so that loan payments can be made for one year?

Step 1: Press MOOE and set the
number of decimal places to 2 :

Step 2: Press APPS 11
to open the TVM Solver:

Step 3: Enter the values of the variables as shown.
What the variables represent:
N (Number of Payments)
I\% (Annual Interest Rate)
PV (Present Value)
PMT (Payment)
FV (Future Value)
P/Y (Number of Payments/Year)
C/Y (Number of Compounding
Periods/Year)
PMT: END BEGIN (Payments at End of
Payment Interval)
$\mathrm{PV}=0.00$ because it is the variable to be solved
PMT is negative because money is being paid out
$\mathrm{FV}=0.00$ because there will be no money
in the account when the payments are finished

HMWK:
 p 506
 \# 2, 3b, 5-8, 11, 12, 18, 16*

