7.7 Present Value of an Ordinary Annuity

How much do you need to invest NOW to make regular payments....

Solve a PV Annuity Problem:

Method 1: Use a time line diagram
 $$
\begin{aligned} & \$ 200 \times 12 \times 1 \\ & =2400 \end{aligned}
$$

Holly must begin to repay her student loan. Her monthly payments of $\$ 200$ will be withdrawn at the end of each month from an account earning 6% interest compounded monthly. How much must she deposit in the account today so that loan payments can be made for one year?

Method 2: Use a Formula
Holly must begin to repay her student loan. He monthly payments of $\$ 200$ will be withdrawn at the end of each month from an account earning 6% interest compounded monthly. How much must she deposit in the account today so that loan payments can be made for one year?

$$
\begin{aligned}
& P V=\frac{R\left[1-(1+i)^{-n}\right]}{i} \\
& =\frac{200\left[1-(1+0.005)^{-12]}\right.}{0.005} \\
& P V=\$ 2323.79
\end{aligned}
$$

(compared to $\$ 2400$
PV is the present value in \$
R is the regular payment
i is interest rate per period
n is total the number of deposits

$$
\begin{aligned}
P V & =? \\
R & =200 \\
i & =0.06 \div 12 \\
& =0.005
\end{aligned}
$$

$$
n=1 \times 12
$$

if she just paid the $\$ 200$ every month)

Method 3: Use a Graphing Calculator

Holly must begin to repay her student loan. Her monthly payments of $\$ 200$ will be withdrawn at the end of each month from an account earning 6% interest compounded monthly. How much must she deposit in the account today so that loan payments can be made for one year?

$$
P V=2323.79
$$

Step 3: Enter the values of the variables as shown.
What the variables represent:
N (Number of Payments)

I\% (Annual Interest Rate)
PV (Present Value)
PMT (Payment)
FV (Future Value)
P/Y (Number of Payments/Year)
C/Y (Number of Compounding Periods/Year)
PMT: END BEGIN (Payments at End of
Payment Interval)
$\mathrm{PV}=0.00$ because it is the variable to be solved
PMT is negative because money is being paid out
$\mathrm{FV}=0.00$ because there will be no money in the account when the payments are finished

Ex 2. You are planning to buy a new car for $\$ 23000$. The dealership has offered you financing at $3.4 \% /$ annum, compounded monthly, for 5 years. Determine your monthly payment.

$$
\begin{aligned}
P V & =23000 \\
R & =? \\
i & =0.034 \div 12 \\
& =0.00283 \\
n & =12 \times 5
\end{aligned}
$$

$$
\begin{aligned}
P V & =\frac{R\left[1-(1+i)^{-n}\right]}{i} \\
23000 & =\frac{R\left[1-(1+0.00283)^{-60}\right]}{0.00283} \\
23000(0.00283) & =R\left[1-(1.00283)^{-60}\right] \\
6.5 .09 & =R\left[1-(1.00283)^{-60}\right] \\
{\left[1-(1.00283)^{-60}\right] } & {\left[1-(1.00283)^{-60}\right] } \\
R & =\$ 417.34
\end{aligned}
$$

How much do we pay for car?

$$
\begin{aligned}
& 417.34 \times 12 \times 5 \\
& =\$ 25040.40
\end{aligned}
$$

Ex. 3 You WIN Cash For Life....
(Which is actually just $\$ 1000$ for 25 years)
5% comp week 'll a week
HOw much does the lottery have to invest today in order to pay you?
you win $\$ 1000 \times 52 \times 25$

$$
=\$ 1300000
$$

$$
\begin{aligned}
& P V=? \\
& R=1000 \\
& n=52 \times 25 \\
& i=0.05 \div 52
\end{aligned}
$$

$$
\begin{aligned}
& N=52 \times 25 \\
& I=5 \\
& \hline P V=? \\
& P M T=1000 \\
& F V=0 \\
& P N=52 \\
& C Y=52
\end{aligned}
$$

HMWK:
p 506
\# 2, 3b, 5-8, 11, 12, 18, 16*

