3.5 Graphing Non-Linear Relations

Investigation: Motion of a Pendulum

page 175 in text

Purpose:

To determine if there is a relationship between the length of a pendulum and the time it takes it to complete 6 swings.

Hypothesis:

I think that as the length of the pendulum decreases, the time to complete six swings will ______ because....

Materials:

Pencil, investigation recording sheet, pendulum (washer on a string), measuring tape, clock/watch, tape.

Procedure:

1. Start with a pendulum length measuring 50 cm.

- 3. Release the pendulum from a 35 degree angle and start the timer.
- 4. Record the length of time it takes to complete six full swings.
- 5. Repeat, after decreasing the length of the pendulum in increments of 10 cm (ie. repeat for lengths of 40 cm, 30 cm, 20 cm and 10 cm).

Observations:

- Record your measurements in the table provided.
- Create a scatter plot of your data.
- Draw a curve of best fit for the data.

Conclusion/Inference:

- Describe the relationship in your own words.
- Was your hypothesis correct?

Reflection:

- Describe any factors that may have affected your results.
- Estimate how long it might take to complete 6 swings if your pendulum was 25 cm long.
- What other factors do you think might affect the time for one swing? How could you check?

Section 5.5, Investigate Recording Sheet

Motion of a Pendulum

						Augrago
Pendulum length	Time to complete 6 swings (s)				Total time for all 4 trials	Mean time (s) Total time
(cm)	Trial 1	Trial 2	Trial 3	Trial 4	(s)	$\left(\frac{10 \text{ tal time}}{4}\right)$
50 cm						8.8
40 cm						8.0
30 cm						6.8
20 cm						6.0
10 cm						4.0

Practice: page 179 #5

- a) Describe the pattern in the cubes.
- b) Extend the pattern to the next two solids that would occur. Copy and complete the table.
- c) Describe any trends in the data.

Edge Length	Number of Cubes
1	
2	
3	

- d) Suppose you know the edge length of a solid in this pattern.
- i) How can you determine the number of cubes needed to build it?
- ii) How is this number related to the volume of the solid?
- e) Continue the table for the next two solids in the pattern.
- f) Graph the data.

- g) How is the volume of a solid related to its edge length? Write a rule.
- h) What is the edge length of the solid with 512 cubes?
- i) How many cubes would be needed for the 10th solid?

Homework: page 177 #1,4,5

