3.1 Investigating Non-Linear Relationships

A. Lines and Curves of Best Fit

Line of Best Fit

Curve of Best Fit:

Ex. 1 Determine whether the data represents a linear or non-linear relation, then draw the line or curve of best fit.

Bayonne Bridge, NY

Parabolic reflectors

Y=-0.07(x-10.98)²+14.56

Basketball

B. Scatter Plots

Ex. 2 A toy rocket is launched straight up. The table shows its height, h, in metres above the ground after t seconds.

a) Create a scatter plot of the data.

Time	Height
0	16
1	49
2	72
3	85
4	88
5	81
6	64

- b) Describe the relation.
- c) Draw a curve of best fit.
- d) Use your model to predict the height of the rocket at 8 seconds.
- e) Describe how the graph would change if the rocket stayed in the air for 15 seconds.

Ex. 3 Toothpicks can be arranged to create equilateral triangles as shown.

a) Complete the table and create a scatter plot for the data.

Side Length	Total # of Toothpicks
0	0
1	3
2	
3	
4	
5	

- b) Describe the relation.
- c) Draw a curve of best fit.
- d) Use your model to predict the number of toothpicks needed to build a triangle with a side length of 6 toothpicks.

Graphs of Quadratic Relations

Ex. 4 Complete the table of values and graph each relation.

a) $y = x^2$

х	У		
	\exists		
	╣,		
\Box	\dashv		

b) $y = 5 - x^2$

c) $y = 2x^2 - 3x - 4$

х	У								
					ŧ				

Describe what these graphs have in common.

Ex. 5 Use graphing technology to graph each of the following.

- a) $y = -2x^2 + x 3$
- b) $y = x^2 + 7x + 3$
- c) $y = x^2 4x + 4$

Graph

These are the graphs of **QUADRATIC** relations.

The graph is called a **PARABOLA**.