3.6 Factored Form

Investigate:

Use Braphing technology Graph the equation and note the location of the x-intercepts, axis of symmetry and vertex.

Equation	x-int.	axis of symmetry	vertex	sketch
y = (x - 4)(x + 2)				
y = 0.5(x - 5)(x - 1)				
y = 2x(x+4)				
y = (x - 2) (x - 7)				
y = (x + 4)(x + 4)				
y = -3(x + 2)(x + 5)				

Summary:
same "a" as
$$y = a(x - r)(x - s)$$

vertex form

- represents an equation in FACTORED form
- the x-intercepts, or zeros, are r and s
- the axis of symmetry is between the x-intercepts $x = \frac{r+s}{2}$
- the x-coordinate of the vertex is $x = \frac{r+s}{2}$
- find the y-coordinate of the vertex by substituting the x-coordinate of the vertex in the equation

Ex. 1 Determine the equation of the parabola in factored form. Algebraically determine the value of a.

Ex. 2 Sketch each parabola. Label the x-intercepts and the vertex.

a)
$$y = (x-3)(x+5)$$

b)
$$y = -0.3(x+2)(x+5)$$

c)
$$y = -\frac{1}{2}(x-1)(x+6)$$

- Ex. 3 Chris kicked a ball from the ground. It travelled a horizontal distance of 52 m and reached a maximum height of 17 m.
- a) Draw a sketch of the relation between horizontal distance and height.

b) Determine the equation of the relation in factored form.

Your Turn: p. 192 #3,4,5,7,8,10,11

