

3.7 Negative and Zero Exponents

Ex. 1 Complete the table of values for $y = 2^x$. Graph $y = 2^x$.

Describe the graph. How does it compare to $y = x^2$?

Will the graph ever cross the x-axis? Explain.

Ex. 2 Complete the table for $y = 3^x$.

plete th	ie table	for y = 3 ³	•	no de	acinalsuse factions
X	y=3 ^x		Х	y=3×	use fractions
5)	-1		Think about what a negative exponent means!
4			-2		
3			-3		
2			-4		
1			-5		
0			-6		

Ex. 3 Use the pattern in the previous examples to determine the value of:

- a) 4⁻¹
- b) 5⁻²
- c) 7⁻³
- d) 4⁻²

- e) 5º
- f) 4⁰
- g) 9⁰
- h) 435^o

Rule: for any non-zero base "a"

$$a^0 = 1$$

and

$$a^{-k} = \frac{1}{a^k}$$

Ex. 4 Evaluate. No decimals.

- a) 2^{-3} b) 3^{-4} c) 5^{-3} d) 6^{-2}

- e) $(-2)^{-4}$ f) $(-3)^{-1}$ g) $(-4)^{-3}$ h) -5^{-2}

Ex. 5 Evaluate. No decimals.

a)
$$\left(\frac{1}{4}\right)^{-2}$$

a)
$$\left(\frac{1}{4}\right)^{-2}$$
 b) $\left(\frac{-2}{3}\right)^{-3}$ c) $\left(\frac{-1}{5}\right)^{-1}$ d) $\left(\frac{4}{3}\right)^{-2}$

c)
$$\left(\frac{-1}{5}\right)^{-1}$$

d)
$$\left(\frac{4}{3}\right)^{-2}$$

Ex. 6 A bacteria colony decays by ½ of its original population every 5 hours.
a) What fraction remains after 20 hours? 30 hours? 50 hours? Positive Exponent
b) Write each fraction from a) as a power with a negative exponent. Negative Expone
c) If the colony started with 32768 bacteria. How many remain after 25 hours?