5.3 Solving by Factoring

Recall: Equations in Factored Form Where are the zeros/ x-intercepts?

Equation	y = (x - 4)(x + 2)	y = x (x - 5)	$y = (x+3)^2$
Roots			
Sketch	•		

Recall: The zeros/x-intercepts/roots are the values of x that cause the function, y, to equal zero.

If $a \cdot b = 0$, either a = 0 or b = 0.

Where are the zeros for the following?

y = (2x + 1)(3x - 2)	y = x (5x - 2)	$y = (2x + 7)^2$

Finding the zeros of $y = ax^2 + bx + c$ is the same as solving the equation $ax^2 + bx + c = 0$

To Solve a Quadratic Equation:

- write in the form $ax^2 + bx + c = 0$
- fully factor
- determine the value of x that makes each factor equal to zero

Ex. 1 Solve.

a)
$$(x-5)(2x+3)=0$$

b)
$$x(3x-5)=0$$

c)
$$x^2 + 4x - 5 = 0$$

d)
$$x^2 - 7x + 12 = 0$$

e)
$$2x^2 + 5x - 3 = 0$$

f)
$$10x^2 + 19x + 6 = 0$$

Ex. 2 Solve.

a)
$$3y^2 + 15y + 18 = 0$$

b)
$$2x^2 - 8x = 0$$

c)
$$4b^2 - 9 = 0$$

d)
$$-m^2 + 7m - 10 = 0$$

e)
$$4x^2 + 14x = 8$$

f)
$$w^2 + 4 = 3w(w - 5)$$

Ex. 3 Write a quadratic equation having roots:

a) 3, -2

b) ¾, -½

Ex. 4 A ball is thrown from a cliff. Its height, h, in metres, above the sea, after t seconds, can be modelled by the equation $h = -5t^2 + 21t + 120$. How long will the ball take to fall 20 m below its initial height?