https://www.google.ca/#q=you+tube+quadratic+formula

<u>5.6 Quadrac Formula Problems</u>

Which part of the quadrac formula determines the number of zeros?

In $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$: the # under the $\sqrt{\ }$ ie. the discriminant determines whether there will be 2. 1 or determines whether there will be 2, 1 or 0 soluons.

- 1. If b^2 4ac > 0 then the quadrac equaon has 2 real roots.
- 2. If $b^2 4ac = 0$, then the quadrac equaon has 1 real root.
- 3. If b^2 4ac < 0, then the quadrac equaon has no real roots. hegative

Ex. 1 Determine the discriminant, then state the number of roots (soluons/zeroes).

$$\begin{array}{ll}
A = 3 & b = 7 & c < 9 \\
A = 3 & b = 7 & c < 9 \\
A = 4 & c & c \\
A = (7)^2 - 4 & c & c \\
A = (4)^2 - 4 & c & c \\
A = (4)^2 - 4 & c & c & c \\
A = (4)^2 - 4 & c & c & c & c \\
A = (4)^2 - 4 & c & c & c & c \\
A = (4)^2 - 4 & c & c & c & c & c \\
A = (4)^2 - 4 & c & c & c & c & c \\
A = (4)^2 - 4 & c & c & c & c & c \\
A = (4)^2 - 4 & c & c & c & c & c \\
A = (4)^2 - 4 & c & c & c & c & c \\
A = (4)^2 - 4 & c & c & c & c & c \\
A = (4)^2 - 4 & c & c & c & c & c \\
A = (4)^2 - 4 & c & c & c & c & c \\
A = (4)^2 - 4 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c & c \\
A = (4)^2 - 6 & c & c & c \\
A = (4)^2 - 6 & c & c & c \\
A = (4)^2 - 6 & c & c & c$$

$$a=5$$
 $b=-8$ $c=-3$
b) $0=5x^2-8x-3$

Number of Roots

". TWO REAL ROOTS

Ex. 2 A cliff diver in Acapulco, Mexico, dives from about 17m above the water. The diver's height above the water, h, in meters, aer t seconds, is modelled by the equaon

 $h = -4.9t^2 + 1.5t + 17.$

How long is the diver in the air?

$$t=?$$
 $h=0$ $a=-4.9$ $b=1.5$ $c=17$

0=-49t2+1.5t+17 -> Solve fort', How?

$$t = -b \pm \sqrt{b^2 - 4ac}$$

$$= -1.5 \pm \sqrt{(1.5)^2 - 4(-4.9)(17)}$$

$$2(-4.9)$$

 $= \frac{-1.5 \pm \sqrt{335.45}}{-9.8}$

$$t = -\frac{1.5 + \sqrt{335.45}}{-9.8}$$

nadmissable [C]

$$t = -1.5 - \sqrt{335.45} \\ -9.8$$

... Diver hit the water after 2.05

-> Quadratic formula -> factoring Ex. 3 The height of an object thrown downward off the Peace tower is given by the equaon $h = -5t^{-2} - 5t + 90$, where h is the height above the ground in metres and t is the me in seconds. How long does it take for the object to hit the ground?

Ex. 4 A ball is thrown up into the air. Its height h, in metres, aer t seconds is $h = -4.9t^2 + 38t + 1.75$.

- a) What is the height of the ball aer 3 s?
- b) For what length of me is the ball above 50m?

a)
$$h = ?$$
 $t = 3$
 $h = -4.9(3)^2 + 38(3) + 1.75$
 $\stackrel{\times}{=} 71.65$

... The height of the ball is exactly 71.65m after 3 seconds

$$50 = -4.9t^2 + 38t + 1.75$$
 Solve for 't'

 $0 = -4.9t^2 + 38t + 1.75 - 50$ move all terms to one side

 $0 = -4.9t^2 + 38t - 48.25$ Quad Form

$$t = -b \pm \sqrt{b^2 - 4ac}$$

$$= -38 \pm \sqrt{38^2 - 4(-4.9)(-48.25)}$$

$$= -38 \pm \sqrt{498.3}$$

$$= -9.8$$

$$t = -38 + \sqrt{498.3}$$

$$-9.8$$

$$t = |-38 - \sqrt{498.3}$$

$$-9.8$$

$$t = |-38 - \sqrt{498.3}$$

$$-9.8$$

$$t = |-38 - \sqrt{498.3}$$

$$-9.8$$

time above
$$50 \text{ m} = 6.2 - 1.6$$

= 4.6 s

. Ball was above 50 m for 46s.

c) When does the ball strike the ground?

⇒zeros /roots t=? h=0

0=-4.9t²+38t+1.75 Solve ⇒ auad form

$$t=-38\pm\sqrt{38^2-4(-4.9)(1.75)}$$

2(-4.9)

 $t=-38\pm\sqrt{1478.3}$

-9.8

 $t=-38+\sqrt{1478.3}$

-9.8

 $t=-38+\sqrt{1478.3}$

1=7.8

 $t=-3.05$

inadmissable .*, Ball hit ground

after 7.8 s

